203. The Conductivity of Electrolytes in Ethyl Cyanoacetate and in o-Toluonitrile.

By JAMES CHARLES PHILIP and PUNDI RANGARAMANUJAM.

THE present investigation is a continuation of the work of Martin on benzonitrile as a solvent for electrolytes (J., 1928, 3270; 1930, 530). The results recorded below, taken in conjunction with those for benzonitrile, and those of Walden and Birr for acetonitrile (Z. *physikal. Chem.*, 1929, **144**, 269), provide material for the comparative study of a series of solvents with a common characteristic group. The accurate conductivity data accumulated by various workers in recent years indicate that the behaviour of a liquid as a solvent for electrolytes—even at very low concentrations—is not determined solely by its dielectric constant and its viscosity. Specific chemical influences also are operative, and on this ground the investigation of a series of chemically related solvents is important. With this consideration in view, the systematic study of various liquids containing the CN group has been undertaken.

EXPERIMENTAL.

Conductivity Measurements.—The set-up of the bridge was similar to that used by Martin (*loc. cit.*), but the detector consisted of a two-valve amplifier and high-resistance telephones. The advantages of this modification, and the screening and earthing arrangements which it involves, have already been described in a communication from these laboratories (Ives and Riley, J., 1931, 1998).

All the conductivity measurements were carried out at $25^{\circ}\pm 0.01^{\circ}$, the cell being immersed in an electrically heated water-bath, controlled by a mercury-toluene regulator. The cell used throughout was the one referred to as P I by Martin, and its constant, redetermined on the lines suggested by Frazer and Hartley (*Proc. Roy. Soc.*, A, 1925, **109**, 351), was 0.03401.

The solutions employed in the conductivity measurements were in all cases made up by weight, and the procedure and precautions adopted by Martin were followed. Volume concentrations were obtained from the weight of solvent present in a solution, and the density of the pure solvent.

In one or two cases special care had to be taken in order to obtain satisfactory conductivity measurements. Solutions of silver nitrate in ethyl cyanoacetate undergo a slow change (compare Koch, J., 1928, 273), and were therefore examined only when freshly prepared, whilst consistent results for solutions of silver nitrate in *o*-toluonitrile could be obtained only with solvent of the highest degree of purity. Again, solutions of potassium iodide in ethyl cyanoacetate, owing to their sensitiveness, had to be prepared and examined in diffuse artificial light.

Purification of Materials.—Ethyl cyanoacetate. The large middle fraction obtained in a fractionation of the commercial product was washed with sodium carbonate solution and extracted with ether. The ethereal extract was washed with water and dried with calcium chloride. The residue then obtained after removal of the ether was distilled in a vacuum, and the middle fraction was shaken or allowed to stand with calcium chloride. Redistillation under reduced pressure gave a product the specific conductivity of which in different cases lay between 1.2 and 3.5×10^{-7} mho. The density of this pure ethyl cyanoacetate was 1.0607 at 25° , referred to water at 4° . Its viscosity at 25° , measured on 10 c.c. in an Ostwald viscometer with a water period of 258 seconds, was found to be 0.0251 (the value for water being 0.00895).

o-Toluonitrile. This was purified in a similar way. The specific

 ± 0.00 =0.07 $\substack{\pm 0.00\\+0.01}$ +0.01-0.04 -0.06-0.04 ± 0.00

+0.02+0.02 ± 0.00 +0.02 $-0.03 \\ -0.02$ ± 0.00 $\pm_{0.02}$

+0.07-0.02 + 0.01+0.01 ± 0.00 ± 0.00 +0.02 + 0.01 + 0.01 ± 0.00 -0.01-0.06

+0.02+0.01±0.00 $+0.02 \\ -0.02$ ± 0.00 =0.01 ± 0.00 -0.02

		Solvent	: Ethyl	cyanoace	tate.		
Silver Nitrate.				Potassium Iodide.			
$\Lambda = 25 \cdot 46 - 277 \cdot 8 \sqrt{c}.$				$\Lambda = 25 \cdot 01 - 115 \cdot 2\sqrt{c}.$			
Series.	$c \times 10^4$.	Λ.	Diff.	Series.	$c \times 10^4$.	Λ.	Diff.
a	16.79	14.25	+0.18	b	17.01	20.26	± 0.00
С	9.175	17.04	-0.01	a	11.97	20.96	-0.0
a	7.971	17.67	+0.05	a	7.936	21.77	+0.0
b	7.085	18.17	+0.10	b	5.814	22.23	+0.0
։ Ե	4.200	19.71	-0.01	a L	4.440	22.09	+0.0
b	9.486	21.03	-0.02	0	9.716	22.18	-0.0
e	2.352	21.00	-+0.06	ĥ	2.208	23.25	-0.0
Ď	1.665	21.86	-0.01	Ď	1.143	23.79	+0.0
ē	0.902	22.75	-0.08				
c	0.311	23.37	-0.54				
	Lithium	Bromide		Tetr	amethylam	monium	Iodide.
	$\Lambda = 19 \cdot 10$	-196.7	c.		$\Lambda = 26 \cdot 68$	-72.67	č.
a	15.74	11.68	+0.39	a	10.48	$24 \cdot 35$	+0.0
b	9.866	13.04	+0.11	b	8.026	24.64	+0.0
a	6.190	14.30	+0.09	a	6.311	$24 \cdot 86$	± 0.0
b	3.763	15.39	+0.11	b	5.274	25.02	+0.0
a	2.365	16.14	-0.07	a	4.051	25.25	-0.0
b	1.368	16.80	± 0.00	b	1.682	25.72	-0.0
a	0.795	17.34	± 0.00	a	1.224	25.87	±0.0
b	0.395	17.88 18.15	-0.02 -0.06	D	0.8044	20.01	-0.0
N, N	0 2002	10 10	0.00				
	Sodium	Iodide.		${\operatorname{Tet}}$	raethylamr	nonium I	lodide.
	$\Lambda = 23.40$	085.6√	č.		$\Lambda = 25.75$	70·53√	<i>c</i> .
a	16.16	19.95	± 0.00	ь	11.325	$23 \cdot 45$	+0.0
ь	11.42	20.47	-0.03	е	10.470	$23 \cdot 45$	-0.0
a	8.590	20.86	-0.03	a	7.665	23.81	+0.0
с	7.420	21.05	+0.02	с	5.712	24.07	+0.0
b	6.183	21.25	-0.01	a. 1	4.701	24.22	±0.0
a	4.335	21.63	+0.01	b	2.590	24.67	±0.0
с	2.927	21.93	± 0.00	e	2.312	24.07	+0.0
a L	2.342	22.12	+0.03	а. Ъ	1.015	24.00	
D	1.001	22.04	+0.06	D O	0.058	25.06	+0.0
U h	0.5596	22.01	-0.01	9	0.687	25.16	±0.0
0	0.4432	22.82	-0.01	ĥ	0.371	25.26	-0.0
Ď	0.3340	22.89	-0.01	2	0011	-0 -0	
c	0.2423	22.91	-0.07				
Tet	raethylamm	onium B	romide.	Tetr	apropylam	monium	Iodide.
	$\Lambda = 24.80$	-86.76	<i>c</i> .		$\Lambda = 23.60$	-62.74v	\overline{c} .
я	20.76	20.92	+0.08	а	11.28	21.47	+0.0
b	12.18	21.83	+0.06	b	8.989	21.71	+0.0
a	11.51	22.01	+0.08	a	6.977	21.94	± 0.0
ь	7.760	$22 \cdot 44$	+0.05	b	6.172	22.02	+0.0
a	4.797	22.93	+0.03	b	4.474	22.25	-0.0
b	2.672	23.36	-0.03	a	3.362	22.45	± 0.0
b	1.446	23.75	-0.01	b	2.564	22.58	-0.0
a	1.062	23.90	-0.01	D h	1.010	23.00	±0.0
D b	0.7995	24.00	-0.03	D	0.1910	20.07	
	0.0700	4 T I U					

Solvent : o-Toluonitrile.

Silver Nitrate.				Potassium Iodide.			
$\Lambda = 41 \cdot 10 - 1027 \sqrt{c}.$				$\Lambda = 41.08 - 253.3 \sqrt{c.}$			
Series.	$c~ imes~10^4$.	Λ.	Diff.	Series.	$c imes 10^4$.	Λ.	Diff.
я.	9.481	10.11		h	6.621	34.59	+0.03
ĥ	6.436	15.04	-0.01	ĥ	4.033	36.02	+0.03
ĥ	4.571	10.11	-0.03		3.863	36.12	+0.02
	3.407	22.01		h	2.433	37.12	10.00
h	9.760	22.01	+ 0.03	0	2.400	27.27	
0	2.161	24.05	+ 0.06	a	1.979	20.01	-0.01
a h	1,691	20.00	+ 0.00	a	0.894	00°41 90.79	-0.01
0	1.110	20.00	±0.00	а	0.974	30.13	-0.00
a	0.5640	30.71	-0.03		T :+1	Danamaida	
8	0.3042	33.38	-0.07		Lithum	Bromide	•
સ	0.3910	34.79	-0.17		$\Lambda = 27.8$	0780√	c.
				a	5.895	11.03	+2.16
	Sodium	Iodide.		b	2.611	15.31	+0.11
		940.94	/-	a	1.820	17.29	+0.01
	$\Lambda = 38.02$	$-249 \cdot 2 \sqrt{2}$	с.	b	1.113	19.59	+0.02
a	17.62	27.69	+0.10	a	0.549	21.99	-0.03
b	16.42	28.01	+0.05	a	0.1832	24.31	-0.05
a	11.57	29.60	+0.03				
b	7.997	31.06	+0.05	Tetra	ethvlamm	onium B	romide.
ē	6.155	31.89	+0.02				/
ล	4.666	32.67	+0.00		$\Lambda = 39.30$	-248.9	'c.
ĥ	3.614	33.31	±0.00	Ь	15.59	29.52	+0.05
ē	2.726	33.92	± 0.01	e.	13.61	30.18	0.06
e	1.395	35.13	-0.02	ĥ	10.90	31.12	+0.04
ē	0.479	36.23	-0.09	b	7.733	32.36	-0.04
U	0 110	00 20	- 000	0	5.756	32.34	-1-0.01
				h	2.072	24.26	
Tot	naothriann	nonium 1	adida	U	1.906	95.01	±0.00
ren	raemyramn	domum 1	louide.	а 1	1.909	30-91 96.51	-0.04
	$\Lambda = 41.40$	-236.5	'c.	D	1.208	30.91	-0.00
h	16 00	91 01	0.19	a	0.199	37.00	-0.08
ն	10.09	31.81	+0.13	Tata			Tadida
D	13.84	32.09	+0.08	Tetra	apropylam	nonium	toalae.
a 1	12.14	33.18	+0.02		$\Lambda = 37.00$	-223.5	'c.
D	10.20	33.70	-0.02		10.00	00.00	
a	7.997	34.74	+0.02	b	13.33	28.92	+0.08
D	5.712	35.69	-0.04	a	12.26	29.28	+0.10
a	4.326	36.20	+0.01	b	9.910	30.01	+0.02
b	2.292	37.81	-0.01	a	8.484	30.52	+0.02
a	1.120	38.82	-0.04	b	6.467	31.36	+0.03
a	0.4317	39.76	-0.08	a	4.832	32.05	-0.04
				b	3.663	32.68	-0.04
				b	1.974	33.84	-0.04
				a	0.945	34.79	-0.04
				a	0.489	35.42	-0.12

conductivity of different pure specimens lay between 0.6 and 1.2 imesThe density and viscosity of the purified material were 10-7 mho. respectively 0.9941 and 0.0157, both at 25°.

The best products obtainable commercially were recrystal-Salts. lised from conductivity water or redistilled absolute alcohol, according to circumstances, and were thoroughly dried by heating or in a vacuum over phosphoric oxide.

Results.

The results of the measurements are set out in the tables on pp. 1514–1515, where c is the concentration of the electrolyte in g.-equivs. per litre, and Λ is the equivalent conductivity at the given concentration. As is customary, the specific conductivity of the solvent has been deducted from the measured value of that of the solution. In all cases two independent series of measurements (in some cases three) have been carried out, and it is found for each salt examined that Λ is a linear function of the square root of the concentration-in harmony with the results of many recent similar investigations. The linear relation in question may be written in the customary form $\Lambda = \Lambda_0 - x\sqrt{c}$, and the special form of this general equation appropriate for each salt is set out at the top of the corresponding table. The values of Λ_0 and x inserted in the separate equations were obtained by drawing a straight line as nearly as possible through the experimental points, extrapolating to zero concentration for Λ_0 , and determining also the slope x of the line. The degree of conformity with the linear relationship may be judged from the figures under "Diff." in the tables. These represent the difference between the experimental value of Λ , and the value calculated by the equation at the head of the table. A + sign indicates that the experimental value is the greater.

Discussion.

The values of Λ_0 for the various salts in ethyl cyanoacetate and *o*-toluonitrile at 25°, obtained by extrapolation as already described, are collected in the following table :—

	Ethyl cyanoacetate.	o-Toluo- nitrile.		Ethyl cyanoacetate.	o-Toluo- nitrile.
KI	25.01	41.08	N(CH ₃) ₄ I	26.68	
NaI	23.40	38.05	$N(C_{3}H_{5})_{4}I$.25.75	41.40
LiBr	19.10	27.80	$N(C_2H_5)_4Br$. 24.80	39.30
AgNO ₃	25.46	41.10	$N(C_3H_7)_4I$	23.60	37.00

The foregoing figures, combined with the values of the viscosity η of the pure solvents, and the corresponding data for acetonitrile (Walden and Birr, *loc. cit.*) and benzonitrile (Martin, *loc. cit.*), serve to test the validity of the Walden rule $\Lambda_0 \eta = a$ constant for a given salt. The results of this test are set out below.

Values of $\Lambda_0 \eta$.							
	KI.	NaI.	LiBr.	AgNO3.	$N(C_2H_5)_4I$	N(C2H5)4Br.	$N(C_3H_7)_4I.$
CH ₃ ·CN	0.643			0.620	0.644	0.625	0.582
C ₆ H ₅ ·CN	0.646	0.597	0.448	0.647	0.629		
CH ₂ (CN)·CO ₂ Et	0.628	0.587	0.479	0.639	0.646	0.623	0.592
C ₆ H ₄ Me CN	0.645	0.597	0.436	0.645	0.620	0.612	0.581

It appears that the value of $\Lambda_0 \eta$ is reasonably constant for each salt, except in the case of lithium bromide, where the conductivity

measurements also were less satisfactory (see tables on p. 1514). In the present work, determinations were carried out at 25° only, but earlier investigations in nitromethane (Philip and Oakley, J., 1924, **125**, 1189), benzonitrile (Martin, *loc. cit.*, p. 3284), and aceto-nitrile (Walden and Birr, *loc. cit.*, p. 305) have adequately shown that the value of Λ_{07} for a given salt is independent also of the temperature.

As already stated (p. 1516), the $\Lambda^{-\sqrt{c}}$ plots were found to be straight lines. For the tetra-alkyl iodides in ethyl cyanoacetate, the slopes x of these lines are only slightly greater than those required by the Onsager equation: this is shown by the figures for $100(x_{obs.} - x_{calc.})/x_{calc.}$ set out in the following table. It will be observed that the deviations for the other salts examined in ethyl cyanoacetate and for all the salts in o-toluonitrile are much greater, and are in some cases very large indeed.

Percentage deviations from Onsager's equation.

	Ethyl cyanoacetate.	o-Toluo- nitrile.		Ethyl cyanoacetate.	o-Toluo- nitrile.
KI	81	73	N(CH ₃) ₄ I	12	
NaI	. 39	73	$N(C_2H_5)_4I$	10	57
LiBr	. 247	529	$N(C_2H_5)_4Br$	41	70
AgNO ₃	340	585	$N(C_{3}H_{7})_{4}I$	1.5	57

Except for potassium iodide, the abnormality in *o*-toluonitrile is distinctly greater than in ethyl cyanoacetate. This is perhaps not surprising, since the deviations found by Martin for salts in benzonitrile were much greater than those recorded by Walden and Birr for salts in acetonitrile. There appear to be factors characteristic of the aromatic solvents which lead to more definite departure from the behaviour postulated in the Onsager formula.

The difference between the aromatic and the non-aromatic solvents suggested in the previous paragraph may be emphasised in another way.* The Onsager equation for uni-univalent salts, if divided throughout by Λ_0 , gives

$$\frac{\Lambda}{\Lambda_0} = 1 - \left[\frac{5 \cdot 78 \times 10^5}{(DT)^{\frac{3}{2}}} + \frac{58 \cdot 0}{(DT)^{\frac{1}{2}} \Lambda_0 \eta}\right] \sqrt{2c}.$$

As already shown, the value of $\Lambda_0 \eta$ for tetraethylammonium iodide in the four nitriles considered is 0.65 at 25°: if this value is inserted in the foregoing equation, and c is taken as 0.0005, then the values of Λ/Λ_0 for tetraethylammonium iodide at N/2000 concentration in the different nitriles should be given by the formula

$$\frac{\Lambda}{\Lambda_0} = 1 - \left[\frac{1 \cdot 83 \times 10^4}{(DT)^{\frac{3}{2}}} + \frac{2 \cdot 82}{(DT)^{\frac{1}{2}}}\right].$$

* See also "Chemistry at the British Association, 1931," p. 55.

The values of the conductivity ratio calculated by this formula are compared with the observed values in the following table :----

Tetraethylammonium iodide in different nitriles at 25° (c = 0.0005).

Acetonitrile Ethyl cyanoacetate Benzonitrile	$D. \\ 36 \\ 27.7 \\ 25.2 \\ 25.2 \\ 0.2$	Λ/Λ ₀ (calc.). 0·956 0·945 0·939	Λ/Λ ₀ (found). 0·953 0·930 0·908
o-Toluonitrile	18.8	0.919	0.872

It is clear that in the two aliphatic solvents the observed value of the conductivity ratio is very close to that calculated by the Onsager equation, whereas in the aromatic solvents—although one of them has a dielectric constant not very different from that of ethyl cyanoacetate—there is a notable discrepancy. It will be interesting to see whether the influence of the chemical nature of the solvent here suggested is confirmed by the results in other nitrilic solvents which are under investigation.

Summary.

(1) The conductivities of a number of salts in ethyl cyanoacetate and in o-toluonitrile have been determined at 25° .

(2) In all cases the equivalent conductivity is a linear function of the square root of the concentration. For the tetra-alkyl-ammonium iodides in ethyl cyanoacetate the slope of this line is only slightly greater than that required by the Onsager equation, but for other salts in ethyl cyanoacetate and for all the salts in o-toluonitrile the observed slope is definitely greater, sometimes very much greater, than the calculated slope.

(3) An inspection of the data now available for four nitrilic solvents suggests that departure from the behaviour postulated by the Onsager equation is more definitely exhibited in aromatic than in aliphatic solvents.

IMPERIAL COLLEGE, LONDON, S.W. 7. [Received, March 16th, 1932.]